

ALTITUDE ON ORGAN TRANSPLANT RECIPIENTS:

EFFECTS OF AN ACUTE EXPOSURE TO SIMULATED OR REAL

THE "MONTE ROSA" PROJECT

Savoldelli Aldo, Dorelli G., Fornasiero A., Callovini A., Decet M., Pellegrini B., Vanoni L., Dalle Carbonare L., Schena F.

XII CONGRESSO NAZIONALE

Ricerca e Formazione applicate alle Scienze Motorie e Sportive

Un ponte verso il futuro

Università degli Studi di Padova 8 - 10 Ottobre 2021

Tranplant recipients and Physical Exercise

Exercise training appears to be beneficial for patients BEFORE and AFTER lung transplantation

Waiting list times can average 326 days in the UK it is important to maintain functional capacity and prevent further physical deterioration in patients

Hume, 2020, Eur Respir Rev

Tranplant recipients and Physical Exercise

Recommendations for Exercise in Adult Solid Organ Tranplant Recipients

- Exercise training improves maximal exercise capacity, lower extremity muscle strength, and health-related quality of life in lung, heart, kidney, and liver recipients
- Exercise training in the posttransplant phase is safe and should consist of aerobic training or combined aerobic plus resistance training. To obtain benefits early or late posttransplant, exercise training should be of a moderate-to vigorous intensity level, 3–5 times a week for a minimum of 8 weeks.
- Early posttransplant (1–6 mo) and/or in case of medical instability, exercise programs should be supervised and can be offered in an outpatient setting or at home.
- Late posttransplant (>6 mo), structured exercise programs, or physical activities can be unsupervised and offered at home or in private fitness centers.

Effects of high altitude

Therapeutic Use of Exercising in Hypoxia

Millet GP, 2016; Hobbins, 2017; Kim 2021; Jung 2021

Residency at high (better moderate) altitudes is associated with lower mortality from cardiovascular diseases, stroke and certain types of cancer

Burtscher M, 2013; Burtscher J 2021

Why high altitude?

1) studying the effects of hypoxia, similar to different pathology

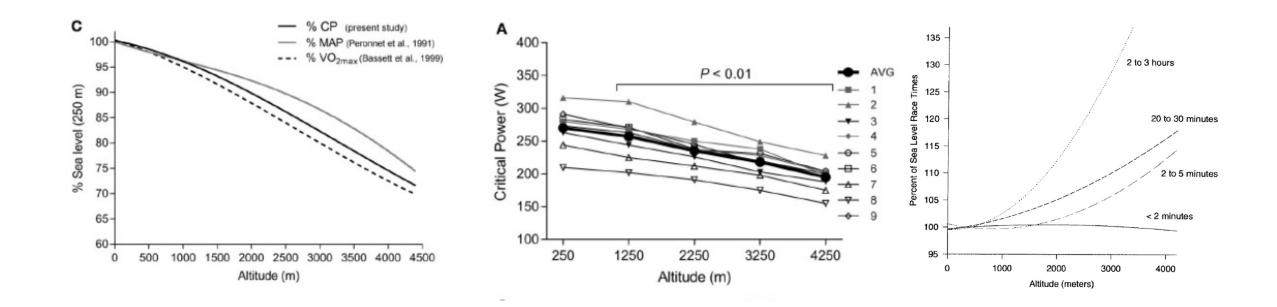
2) WHO reports 35 mln people/year @>3000 m asl3) Estimated more than 100 mln people/year @>2500 m asl

"Progressive" hypoxia

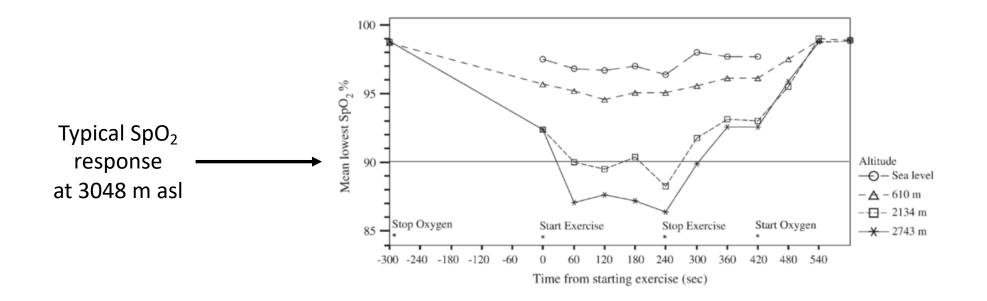
Balance, safety and exercise tolerance at acute high-altitude exposure in patient

(Bruyneel et al., 2017; Schmid et al., 2006; Schmid et al., 2015)

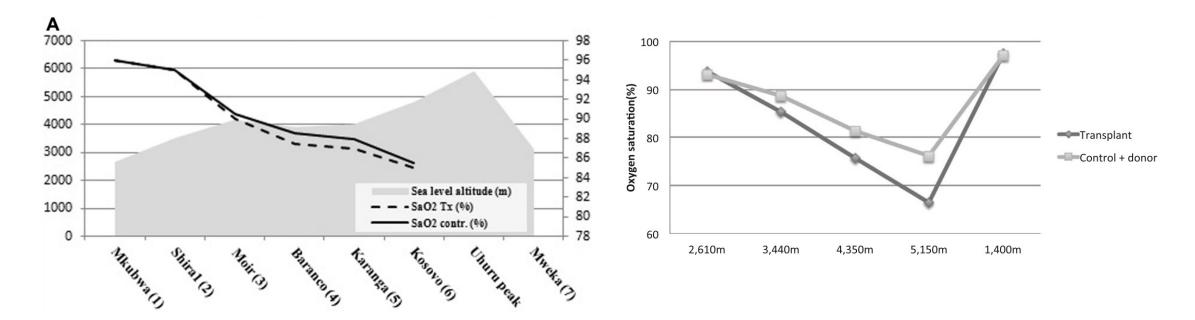
Passive gain of altitude


	Passive gain of altitude	Climb uphill Speed (m/s)	
	\$546 m e800.9 2006 d Bill on fol acient \$400 mildy ung the aporch 3454 m public transport => patients	0.23	
All a	2946im133500(c2848u(Pilliom,ostiacie/tigoidlord)ubyicabbe carble car	1.63	
Nº C	80minif100852t3558442t4C3655555mix(Tealguifte Mu Taidie))byadalelearar	2.34	
	Bonebn Fiken's 2/ខុងថៃby taាន,555 m (Tenerife Mt Teide) by cable car	2.50	
1 de	L ក្ខាត់ទ្រជាខ្លាំង ទីមិនការអ្វី26ណ្ឌា (Pontal d'Entrèves - Pavillon du Mont Fréty) by cable car	2.99	
	a minutegourbeoraedado (Ravipontelucyton tervety prvinten Hallovon menistry) dayo bar car	3.75 🔶	13500 m/h
	ይከልበg22005 m- l3466m (Pavillon du Mont Fréty - Punta Helbronner) by cable car	4.22	,
	Zhang, 2015 - Lab	6.00	
	Active gain of altitude		
	Active gain of altitude	Climb uphill Speed (m/s)	
an g	RedofigX Eliary sornet - Advanced base camp to Everest	0.04	
	Rediterionionistic	0.25	 900 m/h
	Red Bulli 63 by existed - Anthamatten - Rocciamelone 3538 m asl	0.40	
-	Ked Bola kayeteectinde - Anthamatten - Rocciamelone 3538 m asl	0.40	
21	PKe100 tattlety es time	0.42	
	VK world record - Philip Goetsch	0.58	2088 m/h!!!!
	VK world record Philip Gootsch		

VK world record - Philip Goetsch


Effects of high altitude exposure on physical exercise

Effects of hypoxia and exercise on SpO₂



Smith, 2007

Tranplant recipients and high altitude

Lung Transplant Patients on Kilimanjaro

Tranplsant patients and live donors on Island Peak

Aim

Can we provide some evidence predicting the feasibility of a high altitude trek?

How physical performance and cardiopulmonary parameters of transplant recipients change during both real and simulated acute exposure to high altitude?

Methods

5 subjects (3 F, 2 M)

4 transplant (3 lung and 1 kidney) recipients 1 cystic fibrosis patient

	Age	Weight	Height
	(y)	(kg)	(cm)
mean	41.1	63.5	166.7
s.d.	7.0	4.0	5.5

Acute Mountain Sickness susceptibility

rate of ascent, preexposure and **individual susceptibility** are the major, independent determinants for prevalence of AMS

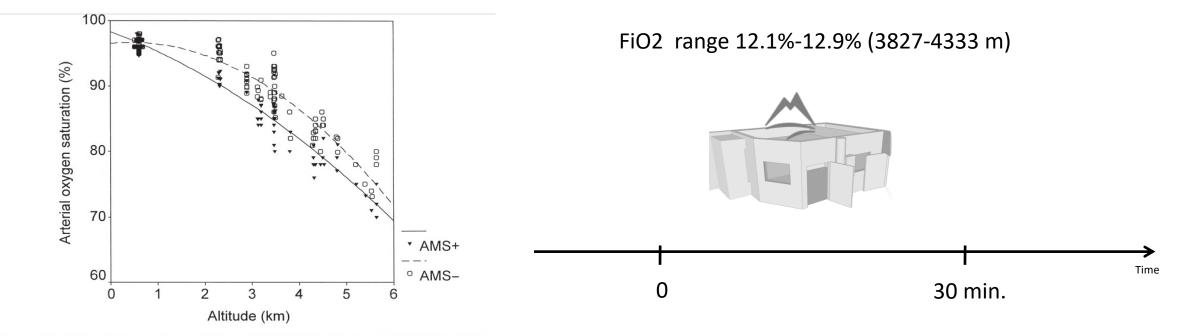
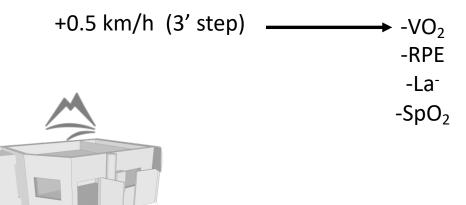


FIG. 1. Altitude-dependent Sa_{O2} values in AMS-susceptible (AMS+) and nonsusceptible (AMS-) subjects. Regression equation for AMS+: $Sa_{O2} = 98.34 - 2.72alt - 0.35alt^2$ ($R^2 = 0.96$) Regression equation for AMS-: $Sa_{O2} = 96.51 + 0.68alt - 0.80alt^2$ ($R^2 = 0.92$) Sa_{O2} , arterial oxygen saturation (%); alt, altitude (km).

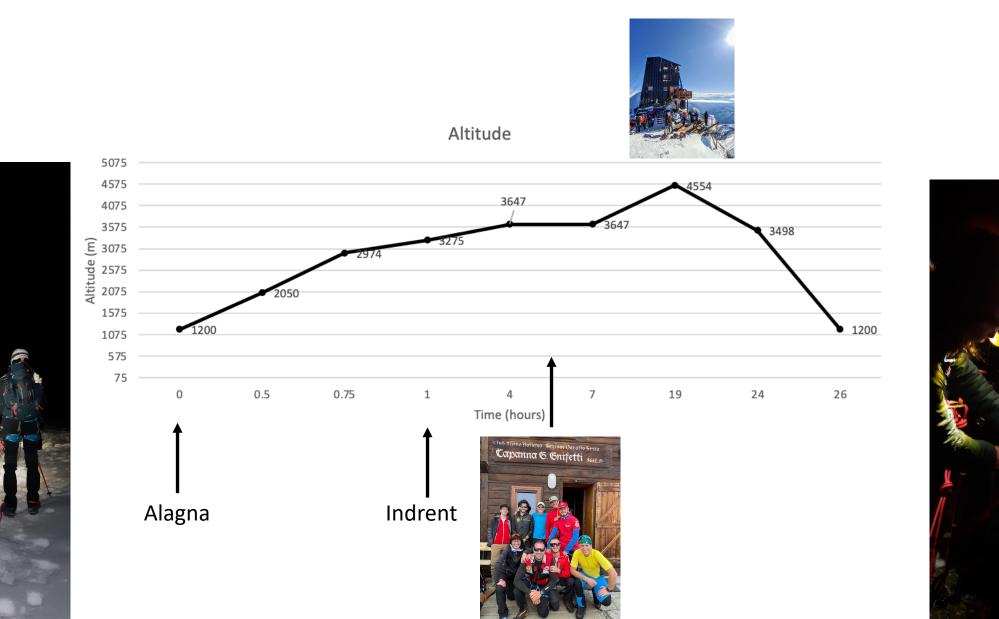
SpO2 drop in 30 min acute exposure



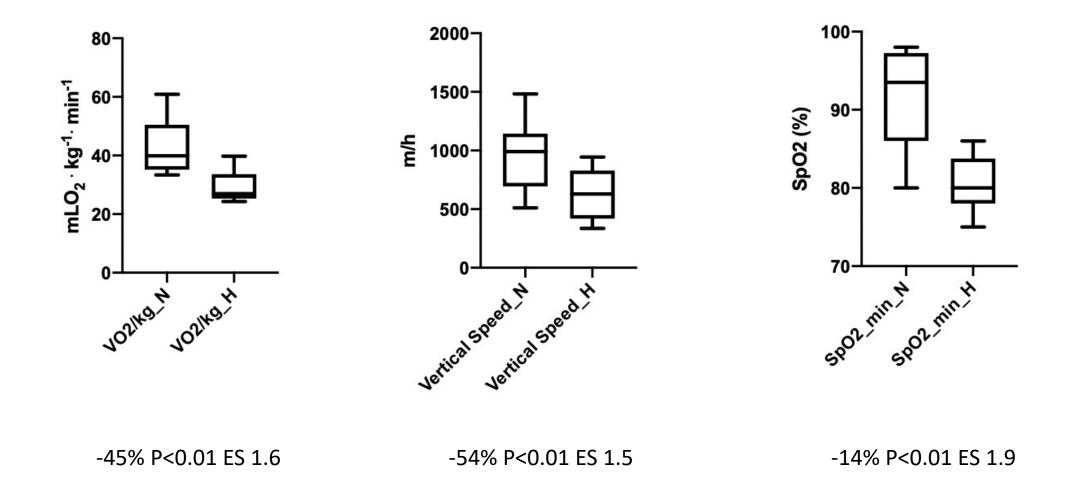
Physical performance and cardiopulmonary parameters

CPET Normoxia and Hypoxia (FiO₂ 0.12%)

25% slope



Real altitude trek: Monte Rosa ascent

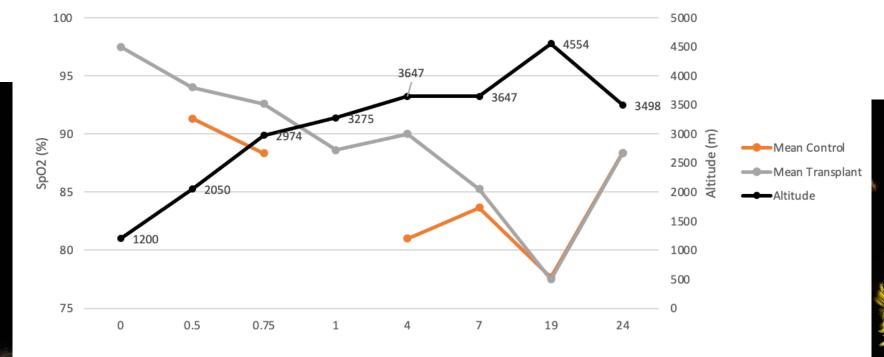


Results: Acute Mountain Sickness susceptibility in trasplant recipients

FiO ₂ range 12.1%-12.9% (3827-4333 m)							
	SpO ₂ after 30 min (%)	FiO2 (%)	Simulated Altitude (m)	AMS +	AMS -		
C.S.	79	12.9	3827	83	87		
T.A.	90	12.7	3950	82	87		
L.V.	87	12.8	3888	82	87		
Z.G.	80	12.3	4204	81	85		
D.M.	83	12.4	4139	81	86		

Individual susceptibility, rate of ascent, and preexposure are the major, independent determinants for prevalence of AMS

UNIVERSITÀ di VERONA Results: Physical performance and cardiopulmonary parameters



Results: SpO2 during the real altitude trek

Summit attempt/success

5 subjects (3 F, 2 M)

4 transplant (3 lung and 1 kidney) recipients 1 cystic fibrosis patient

fitness level?

Conclusion

CPET and performance in hypoxia decreased more than in NON tranplant recipients

VO2peak -45% VS hypotetical -24%

Contrary to other studies on transplant recipients with longer time of adaptations to high altitude, we observed a lower rate of success during a two-days expedition

We can speculate that a stable patient with cystic fibrosis or after an organ transplantation IF PROPERLY TRAINED can achieve high altitude even with an ACUTE EXPOSURE

Grazie!